On Marangoni convective patterns driven by an exothermic chemical reaction in two-layer systems

نویسندگان

  • D. A. Bratsun
  • A. De Wit
چکیده

This article is devoted to the investigation of Marangoni-driven pattern formation at the interface between two immiscible fluids filling a Hele-Shaw cell, each of them containing a reactant of an exothermic neutralization reaction. In such a system, convective patterns arise when one reactant diffuses through the interface to react with the other chemical species in one of the fluids. A chemo-hydrodynamical pattern appears due to Marangoni instabilities taking place because of heat and solutal driven changes of the surface tension. The mathematical model we develop consists in a set of reaction-diffusion-advection equations ruling the evolution of concentrations and temperature coupled to Navier–Stokes equation, written in a Hele-Shaw approximation. In our analysis, the time-dependent convectionless reaction-diffusion base state is first obtained and studied in detail. Next, we perform a linear stability analysis of this base state with regard to thermal and solutal Marangoni effects to determine the parameter values beyond which convection occurs. Finally, we perform numerical simulations of the fully nonlinear system and study the influence of the different parameters on pattern formation. © 2004 American Institute of Physics. @DOI: 10.1063/1.1648641#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern formation and symmetry-breaking bifurcations fueled by dissipation of chemical energy: a possible model for morphogenesis?*2

A solution containing a reacting, autocatalytic and bistable chemical system can spontaneously form patterns and structure from erstwhile homogenous aqueous reaction solutions. Among some of the patterns formed are concentric rings and thermal plumes. The exothermic chemical reaction fuels the pattern-formation through a coupling of Marangoni and Rayleigh±BeÂnard-type thermogravitatioal effects...

متن کامل

Inherent Irreversibility of Exothermic Chemical Reactive Third-Grade Poiseuille Flow of a Variable Viscosity with Convective Cooling

In this study, the analysis of inherent irreversibility of chemical reactive third-grade poiseuille flow of a variable viscosity with convective cooling is investigated. The dissipative heat in a reactive exothermic chemical moves over liquid in an irreversible way and the entropy is produced unceasingly in the system within the fixed walls. The heat convective exchange with the surrounding tem...

متن کامل

Chemical Control of Hydrodynamic Instabilities in Partially Miscible Two-Layer Systems.

Hydrodynamic instabilities at the interface between two partially miscible liquids impact numerous applications, including CO2 sequestration in saline aquifers. We introduce here a new laboratory-scale model system on which buoyancy- and Marangoni-driven convective instabilities of such partially miscible two-layer systems can easily be studied. This system consists of the stratification of a p...

متن کامل

Analysis of Transient Rivlin-Ericksen Fluid and Irreversibility of Exothermic Reactive Hydromagnetic Variable Viscosity

This study analyzes the unsteady Rivlin-Ericksen fluid and irreversibility of exponentially temperature dependent variable viscosity of hydromagnetic two-step exothermic chemical reactive flow along the channel axis with walls convective cooling. The non-Newtonian Hele-Shaw flow of Rivlin-Erickson fluid is driven by bimolecular chemical kinetic and unvarying pressure gradient. The reactive flui...

متن کامل

Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments.

Chemical reactions can impact mixing in partially miscible stratifications by affecting buoyancy-driven convection developing when one phase dissolves into the other one in the gravity field. By means of combined nonlinear simulations and experiments, we explore the power of an A + B → C type of reaction to either enhance or refrain convective dissolution with respect to the nonreactive system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004